科学家创造迄今最大磁场,超级神冈探测器等

来源:http://www.aobaot.com 作者:科学 人气:85 发布时间:2019-09-04
摘要:盘点宇宙八大最强磁体:中子星磁场为地球百万亿倍据美国《探索》杂志报道,磁场是一种看不见、摸不着的特殊物质,而磁体周围存在磁场。在浩瀚的宇宙中,一些物质借助磁场向对

盘点宇宙八大最强磁体:中子星磁场为地球百万亿倍 据美国《探索》杂志报道,磁场是一种看不见、摸不着的特殊物质,而磁体周围存在磁场。在浩瀚的宇宙中,一些物质借助磁场向对方施加强大的影响,比如中子星,它的磁场强度竟然是地球的100万亿倍。以下便是宇宙间最强大的磁体。

文章来自“科学大院”公众号

威尼斯国际平台app 1

揭秘五大超级科学机器:超级神冈探测器等

1.中子星:磁场强度是地球100万亿倍

作者:蒋冬辉

科学家打破磁场世界纪录。图片来源:《科学仪器评论》

北京时间6月2日消息,据国外媒体报道,不要总是把大型强子对撞机挂在嘴上,关于这个庞然大物的报道已经够多了,但除它之外,世界上还有几个研究机器,其重要性一点都不比大型强子对撞机逊色。这些超级机器,有的在跟踪火星机器人,有的在模拟飓风,有的则在揭示超新星诞生之谜,他们不仅具有“冷酷到底”的外观,还肩负着揭开世界上最大的未解之谜的重任。

威尼斯国际平台app 2

问:磁悬浮列车、医院里的磁共振成像MRI、高能粒子对撞机、“人造太阳”这些高大上的设备共同点是什么?

日本东京大学的一个研究团队日前创造了最大的室内磁场纪录——根据磁场强度的标准单位测量,这是一个高达1200特斯拉的磁场。科学家认为,这一研究成果可能为材料科学及核聚变能研究开辟新的途径。

事实上,你可能听说过大型强子对撞机,的确,它是一个具有标志性的科研成就,深埋在瑞士和法国数百英尺的地下,是一个令公众发狂的为数不多的科学项目。今年夏天,大型粒子将在17英里长的环形隧道里对撞。如果一切能按计划进行,这个加速器能提供一些最大、最令人难以捉摸的宇宙之谜的证据,范围从物理学家一直在寻找的令人困惑的暗物质质量,到大统一理论框架,任何一个重要发现都足以震惊世界,因为它将揭示电磁学和强、弱核力(自然界的三种基本力)之间的关系。有人甚至担心,这个加速器可能会制造一个能吞噬地球的黑洞,当然,科学家认为这样的担心是多余的。大型强子对撞机还因其独特的外观而备受关注,随便拍一张这个由十几英里长的电缆、隧道和大量笨重的粒子探测器构成的加速器的照片,就会让人联想到毁灭性武器。

我们可以从自家电冰箱感受到磁体的影响。最强大的人造磁场会让粒子碰撞和聚变反应成为可能。但是,正如我们所看到的,即便与宇宙最远端的磁场(如源于中子星的磁场)相比,人类付出最大的努力仍旧显得苍白无力。超新星种类不同,产生的结果也不同。质量最大的超新星会在爆发以后形成黑洞,而质量相对较小的超新星则会产生中子星。

答:超导磁体!

相比之下,这一特大磁场的强度比现代医院核磁共振成像机器所使用的巨大强力磁体产生的磁场强度高出了400倍,同时它比地球自身的磁场强度高出了5000万倍。

但是,当今科学界为更多开创性的巨型机器留出了足够大的发展空间。从用来探测位于地下数英里处的岩浆的船只,到用于勘测银河超新星第一迹象的微中子探测器,这些位于世界各地的巨大设备正在着手解决各种自然之谜。这些用于研究的机器目前并不是“明星”,没有多少人真正了解他们,但从重要性上看,它们应该得到“明星”待遇。

中子星的密度惊人,磁性同样惊人:地球的磁场强度维持在0.5高斯左右,而中子星的磁场却是地球的100万亿倍。这张照片是钱德拉X射线望远镜拍摄的仙后座A(Cassiopeia A)超新星残余。

威尼斯国际平台app 3

科学家之前曾在户外试验中使用化学炸药生成了更强的磁场,但这一新的世界纪录是以一种可控的方式在室内产生的磁场。这种更加全面的控制意味着这一发现可能会在固态物理研究方面开辟新的领域,或许可以让科学家达到所谓的“量子极限”,即物质中的所有电子都被限制在最低基态的一种状况,在这种情况下可能会出现奇异的量子现象。

威尼斯国际平台app 4

2.磁星:从10万英里处消除信用卡信息

日本超导磁悬浮车

研究人员指出,强磁场对核聚变反应堆也会产生影响,这是有关未来丰富的清洁能源的一个潜在来源的诱人愿景。而为了达到量子极限或维持核聚变,科学家认为可能需要1000特斯拉或更高的磁场强度。

超级神冈探测器是日本建造的大型中微子探测器,最初目标是探测质子衰变,也能够探测太阳、地球大气和超新星爆发产生的中微子。它不是世界上最大,也不是最灵敏的微中子天文望远镜。但是如果发现银河系中有超新星爆发,物理学家应该感谢这个探测器。超级神冈探测器埋在日本中部地区3000英尺的地下,内部填充了5万加仑纯净水,它的设计目的是发现不同类型的中微子。它只分析切伦科夫光,这种光是一种蓝色可见光射线,在核反应堆内非常常见。当带电粒子经过某种介质,比如水,就会产生切伦科夫光。

威尼斯国际平台app 5

(图片来源:

研究人员在最新出版的《科学仪器评论》杂志上发表的一篇论文中描述了这一创造新的世界纪录的试验。

超级神冈探测器由一个135英尺高的不锈钢圆柱体和一个较小的内部结构组成,利用数千个感光元件发现在切伦科夫射线中起作用的中微子。研究员一直在利用这个望远镜证实太阳产生中微子。超级神冈探测器还是第一批用来反击中微子拥有非零质量理论的探测器。但是该探测器最有影响力的功能和它最重要的潜能是,它在超新星早期预警系统中扮演着重要角色。

出于一些尚未被完全理解的原因,有些中子星被归入“磁星”一类。磁星“继承”了一般中子星惊人的磁场强度,并在此基础上乘以1000倍。即便在地球和月球之间停留,磁星仍可以消除信用卡上的信息。

威尼斯国际平台app 6

这篇论文的第一作者中村正介说,这项研究开辟了一个新的科学领域,并“推动了超高磁场的极限”。

银河系比超新星出现的时间要早(最新一颗超新星爆发是在400多年),对物理学家来说,这是一个研究金矿。如果科学家知道有超新星现象即将发生,他们将准备好适当设备,收集即将出现的数据。因为中微子爆发时,超新星更容易观测到,所以超级神冈探测器在一刻不停地观测比光速还快的突然而且可疑的粒子流入。顺便说一句,超新星发出的致命的伽马射线,可杀死地球上的所有生命。科学家表示,下一颗超新星可能离我们很遥远,因此不会对人类造成伤害。尽管超级神冈探测器存在的意义就在于,它可以为我们人类争取数小时逃往银河系其他地方的时间。

科学家尚不确定磁体的磁场强度超过普通中子星的原因,但天文学家发现这种现象越来越明显。当不同寻常的磁场开始减缓中子星的旋转速度时,它会以X射线波长释放剧烈的能爆,美宇航局的X射线望远镜可以看到这一切。

1.5T 医用核磁共振

磁场是一种看不见、摸不着的特殊物质,磁场不是由原子或分子组成的,但磁场是客观存在的。磁场具有波粒的辐射特性。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用接触就能发生作用。由于磁体的磁性来源于电流,电流是电荷的运动,因而磁场是由运动电荷或电场的变化产生的。

  1. 45-T混合磁体(45-T hybrid magnet)

威尼斯国际平台app 7

(图片来源:

相关论文信息:.

威尼斯国际平台app 8

我们大家都听说过黑洞的故事:这些超高密度的超新星残余施加如此惊人的引力,使得它们可以吞噬附近的一切事物,为黑洞进一步提供了能量。但是,故事并未以引力而结束。

威尼斯国际平台app 9

和其他世界纪录一样,佛罗里达州国家高磁场实验室的45-T混合磁体有点令人昏眩:它是世界上最大、最强的磁体,能产生持续稳定的磁场。虽然世界上已经有较强的脉冲磁铁,但是这个高22英尺、重35吨的模型却是威力最强的,它能产生45特斯拉的磁场。这意味着它比地球磁场大约强100万倍!比核磁共振成像仪产生的磁场强20倍。

一旦物质被拉向黑洞,它会在黑洞边缘旋转,并在被吞噬之前甩掉部分角动量。磁性便是在这一过程产生的。在气体绕黑洞盘面边缘旋转时,会产生自己的磁场,这个磁场会抛射盘面的气体远离黑洞。这些喷射物会从距离黑洞最近的气体内部“盗取”能量。随后,气体速度慢慢减缓,最终被这个黑暗的魔兽所吞噬。

欧洲大型强子对撞机

45-T混合磁体由一个11.5特斯拉的超导磁铁和一个33.5特斯拉的电阻磁铁组成。为了产生这种强磁场,45-T混合磁体周围被充满纯净水和液态氦的管子包围着,确保它能在1.8开氏度(或零下456华氏度)的温度下运转。但这些仍不能解释为什么研究人员那么需要这种高能磁铁。

4.全球最大的人造磁体

(图片来源:

这种高能磁铁存在的意义在哪里?强磁场内的分子行为有所不同,在这种情况下更容易进行分析,或者在这种情况下它们有时会呈现不同的基本特征。高磁场研究的重要一环是室温超导电性,它能在不需要昂贵的液态氦或氮系统的情况下,提供超导材料所能提供的所有好处。没有人能担保45-T真能发挥这样的作用,但它是世界上最强大、最有用的磁铁,这一点毫无疑问。

威尼斯国际平台app 10

威尼斯国际平台app 11

威尼斯国际平台app 12

尽管人造磁体不能与自然界最强大的磁体相提并论,但人类的努力并非无足轻重。美国的三个不同机构——佛罗里达州立大学、佛罗里达大学、新墨西哥州洛斯阿拉莫斯国家实验室——构成了美国国家磁场实验室,这里也是世界上最大的人造磁体所在地。

中国聚变工程试验堆

佛罗里达大学的飓风模拟器的设计动机无疑是很好的,但是它也可能会造成一些“恶果”。它的8个高5英尺的风扇能产生时速130英里的风——相当于3级飓风,它形成的高压水柱能模拟每小时35英寸的降雨。

仅仅洛斯阿拉莫斯国家实验室就有8个可在至少50特斯拉(一个普通条形磁体可生成0.01特斯拉的强度)强度下运行的磁体,其中还包括一个用时10年制造的100特斯拉的多点磁体。

(图片来源:

飓风模拟器利用5000加仑的水箱冷却4个船用柴油发动机,这些发动机拥有2800个马力。这些风扇其实产生的是时速为100英里的风,它们产生的风穿过一个能压缩气流的输送管后速度就会增加。这个模拟器曾被用来试验骤雨和飓风引起的阵风对建筑物造成的影响。

运行这些磁体投入巨大,例如,洛斯阿拉莫斯国家实验室便使用一个1.43千兆瓦发电机和5个64兆瓦电源。1.43千兆瓦发电机放在一个由60根弹簧制成的平台上,因为在磁体通电以后,会产生惊天动地的怒吼,所以,发电机放在弹簧平台上面是磁体减速时减缓震动所必须的。

超导磁体不仅高大上,它还很傲娇,对工作环境相当挑剔(需要一定温度以下、一定电流以下、一定磁场以下等条件才愿意工作。)

威尼斯国际平台app 13

5.大型强子对撞机揭开宇宙起源之谜

今天我们来说说它的故事。

绿岸射电望远镜是世界上最大的全动射电望远镜,高约485英尺,重约7700吨。更重要的是,绿岸射电望远镜还是世界上最大的可移动射电望远镜。反射盘的规格为100米x 110米,这一尺寸在世界上独一无二的,这种不对称的形状能防止绿岸射电望远镜的支撑结构让它的反射镜变得模糊不清,望远镜的反射面由2000多块铝面反射板组成。

威尼斯国际平台app 14

超导磁体的发展史

通过每个反射板上的调节器调整反射盘和反射镜的形状,科学家能利用绿岸射电望远镜获得大约5度仰角的天空全视图。该设备在接收无线电信号时灵敏度还相当高。绿岸射电望远镜是以西弗吉尼亚绿岸的名字命名,该地是一个禁止使用无线电的联邦托管区。这台望远镜在研究遥远的脉冲星方面已经取得巨大进步。它的最新任务是追踪美国宇航局的“凤凰”号火星着陆器,这颗着陆器刚刚在火星上着陆。

大型强子对撞机是一个具有多个超大磁体的庞然大物,线圈长度超过14米。超导磁体可以在8特斯拉以上的强度下运行,驱动质子绕一条17英里长的环形隧道运转,令其互相撞击,生成无数的次原子微粒。2008年9月,大型强子对撞机启动后不久便因磁体冷却系统的电连接故障而关闭。如今,经过近一年的维修,这台超导对撞机仍未启动,这种情况将至少持续到今年11月。

超导磁体一般是指利用超导导线绕制的电磁体。(不了解超导的小伙伴,可以戳这里:人类的超导发现史)

  1. “地球”号钻探船

6.国际热核聚变实验堆

威尼斯国际平台app,1911年,荷兰科学家海克·卡末林·昂内斯(Heike Kamerlingh Onnes)发现了汞的超导电性,提出了利用超导线绕制电磁体的构想。但是由于超导材料和制造技术限制,第一个超导磁体直到1955年才由G.B. Yntema利用铌线绕制而成,在4.2K温度下获得0.7T磁场。

威尼斯国际平台app 15

威尼斯国际平台app 16

1961年,J.E.Kunzler等人利用Nb3Sn超导材料,绕成了能产生接近9T磁场的超导线圈,揭开了超导磁体实际应用的序幕。1986年,Georg Bednorz和Karl Müller发现的高温超导电性彻底改变了科学界和工程界以及其他相关领域的研究者们对超导现象的认识,也为更高磁场强度的超导磁体建造打开了新的窗口。

日本“地球”号钻探船一连打破了两项世界纪录:它不仅是世界上最大的科研钻探船,还是有史以来钻探地幔深度最深的船只。从技术上说,俄罗斯有个项目已经向地下钻了12公里深的洞,但“地球”号高400英尺的钻探架将在远离日本海岸的一处容易发生地震的俯冲带向下钻7公里,这里的地壳相对较薄。“地球”号是专门为一支有多年经验的科研探险队建造的,科学家希望通过它能对地幔有更多了解,弄明白为什么通常平稳运动的构造板块会突然锁定,引发地震和海啸。

对科学家来说,获取“自给自足”的聚变能量仍是一个梦想,而实现这个梦想的关键在于磁性。国际热核聚变实验堆是一个由多国参与的项目,是世界上规模最大的融合氘和氚的尝试之一。氘和氚是氢的两个重同位素。一旦国际热核聚变实验堆建立起来,它会不断加热氘和氚,令其变成等离子态,产生500兆瓦的高温。接着,这台装置将利用磁场去包含和控制那些过热的等离子质。

2017年,美国强磁场宣布他们制造的全超导磁体磁场强度成功达到32T(其中低温超导产生15T磁场,高温超导产生17T磁场)。2019年,他们更进一步,在31.1T水冷磁体背景磁体中插入14.4T高温超导内插线圈,在线圈的中心产生了45.5T的磁场强度,创造了稳态强磁场新的世界纪录,展现了高温超导磁体发展的美好前景。

“地球”号是第一个利用石油工业的提升技术(riser technology)的科研船只。在提升技术中,钻杆被充满液体的保护性外套包围,稳定钻孔内的压力。这艘船还装备了电脑控制、可旋转360度的推进器,该装置能对全球定位系统的数据作出反应,让“地球”号在钻孔时保持船体稳定,因为假如这只船漂离原地超过几码,钻杆就会折断。曾经发生的一次类似事故,迫使这个探险队的研究任务暂告一段落,但是该船将在2012年按时完成实验。

7.自然界最奇特的现象——超导电性

利用强磁场有可能揭示物质的物理、化学、生物等许多现象的本质。据统计, 国际上强磁场相关的研究成果先后获得了19项诺贝尔奖,其中1项医学奖、5项化学奖、13项物理学奖。所以越来越多的国家和科研机构都在制定设计制造能产生更高场强的磁体装置的计划。

威尼斯国际平台app 17

威尼斯国际平台app 18

超导电性是自然界最奇特的现象之一,是单纯依靠经典物理学所无法彻底解释的。有些物质在被冷却至接近绝对零度时,其电阻会变为零。因此,电流可以无限期地持续下去。科学家在大型强子对撞机这样的粒子对撞机上采用了超导材料,但你大可不必不远万里前往欧洲去探求它们的特性。超导体中的持续电流可以使物质浮起来,因为恒定电流会排斥浮动物体的磁场。此图中,荷兰科学家在一个16特斯拉的磁场里将一只青蛙浮了起来。

超导磁体发展历史

8.核磁共振成像窥视人体内部奥秘

(图片来源:www.oxford-instruments.cn)

威尼斯国际平台app 19

超导磁体牛在哪里?

自从科学家20世纪70年代初制造出第一台核磁共振成像仪器以来,这项技术的发展可以用“突飞猛进”四个字来形容——以致美国食品与药品管理局不得不给人体暴露于外部的磁性幅度设限。2003年,在伊利诺斯州大学的科学家开发出9.4特斯拉的扫描仪以前,8特斯拉是最大值。9.4特斯拉的扫描仪最终获得美国食品与药品管理局批准。

超导磁体与普通永磁体、常规导线电磁体相比,能够产生更大的磁场。一般永磁体两极附近的磁场在几千高斯以内,要想再提高它的磁场强度非常困难。常规电磁铁是用绝缘铜线或铝线绕在铁芯上制成的磁体,它在产生磁场时,因需要在线圈中通入很大的电流,而产生高温,释放巨大热量,限制常规电磁铁产生更大的磁场,其磁场强度一般不超过2T。而超导磁体内超导导线运行在超导状态下,导线内部没有电阻,相比普通导线,超导线内可以运行更大的电流,从而可以产生更强的磁场,目前超导磁体产生的最高磁场强度达到32T。

但是,它并不是世界上最强大的核磁共振成像扫描仪。曾给麻省理工学院开发出9.4特斯拉扫描仪的布鲁克拜厄斯宾公司(Bruker Biospin)在此基础上设计出11.7特斯拉核磁共振成像扫描仪。2009年,得克萨斯大学宣布计划在其医疗中心安装一台11.7特斯拉核磁共振成像扫描仪。

威尼斯国际平台app 20

更多阅读《探索》杂志相关报道

常规电磁铁是用绝缘铜线或铝线绕在铁芯上制成的磁体

(图片来源:www.magnet.fsu.edu)

此外,超导磁体在很多方面比常规电磁体也具有优越性:

1. 超导磁体稳定运行时本身没有焦耳热的损耗,对于需要在较大空间中获得稳态磁场的磁体,这一点尤为突出,可以大量节约能源,且所需的电源功率很小,也不需要常规磁体那样庞大的供水和净化设备;

2. 超导材料可以有很高的电流密度,因此超导磁体体积小,重量轻,而且可以较容易地满足关于高均匀度或高磁场梯度等方面的特殊要求;

3. 超导磁体工作在持续电流状态下,可以得到极其稳定的磁场,且原理上可以不需要再追加电能,仅需要部分电能维持低温系统即可。

威尼斯国际平台app 21

超导磁体结构

(图片来源:www.oxford-instruments.cn)

如何保持超导低温态?

低温冷却系统是超导磁体的必备条件,当处于其临界温度下才能运行超导磁体。

超导磁体冷却方式分为浸泡冷却和传导冷却两种形式。

浸泡冷却的方式一般将超导磁体置于低温冷却剂中,利用低温冷却剂将超导磁体冷却至超导态,主要的低温冷却剂包括液氦、液氢和液氮等。由于采用液体冷却的方式,这种超导磁体也被称为湿式超导磁体;

传导冷却利用低温制冷机中的冷头通过传导直接冷却超导磁体,所采用的低温制冷机主要包括G-M制冷机和脉管制冷机,这种磁体也被称为干式超导磁体;

零蒸发冷却是浸泡冷却的一种特殊形式,超导磁体浸泡在低温冷却剂中,磁体内部产生的热量使液态的冷却剂转变为气态,然后通过低温制冷机将冷却剂由气态转变为液态,以实现低温冷却剂的循环使用。

室温超导说不定哪天就实现了呢!

自超导电性发现以来,超导体的临界转变温度一直在不断提高,目前常压下超导材料的转变温度已经提高到135K。

发现室温超导材料一直是科研人员永恒的梦想,因此追寻更高温度的超导材料是科技界超热问题之一,超导温度每提升一点点都使相关科技人员兴奋不已,目前德国马普所的科学家在170GPa的高压条件下将镧氢材料的超导临界温度提高到了250K。如果哪天在室温下实现了超导并能普遍应用,那是多么激动人心的历史时刻,因为那意味着大量能源得以节约。

不过,实验室里实现超导是一回事,但能用来实际应用又是另一回事。

目前绕制超导磁体采用的超导材料包括低温超导材料NbTi和Nb3Sn,高温超导材料Bi2212、Bi2223、YBCO和MgB2。由于受超导材料上临界磁场的限制,NbTi一般应用于10T以下磁体中,Nb3Sn线应用于23T以下的磁体中,如果想进一步提高超导磁体磁场强度只能采用高温超导材料进行绕制,理论上其形成的最高磁场可以达到90T以上。一般的超导磁体都是由多种材料构成的,例如美国高场实验室研制的32T全超导磁体由15T低温超导磁体(NbTi和Nb3Sn线圈)和17T高温超导磁体构成。

威尼斯国际平台app 22

超导体转变温度不断提高

(图片来源:

威尼斯国际平台app 23

美国高场实验室32T全超导磁体

(图片来源:www.magnet.fsu.edu)

“失超”是怎么回事?

超导磁体在运行中经常会提及一个词“失超”,顾名思义即失去超导状态。在超导磁体内部扰动源(交流损耗、导线运动和磁通跳跃等)的作用下,超导磁体会不可避免地出现失超。当超导磁体出现失超时,超导磁体中的传输电流分流到超导线中的稳定基体中流动,随之产生大量焦耳热,超导磁体储存的能量瞬间以热量的方式被释放出来,因此在超导磁体失超过程中会启动保护系统,大量的低温冷却剂会以气体的方式大量喷发出来,形成非常壮观的场面。

失超是超导磁体运行中很常见的一种现象,当超导磁体被制造好后,会经历多次失超,以提高磁体性能,我们把这个过程叫做失超锻炼效应。

威尼斯国际平台app 24

超导磁体失超

(图片来源:www.oxford-instruments.cn)

未来,离不开超导磁体

回到开篇时的问题吧:电动悬浮的磁悬浮列车中采用的线圈都是由超导磁体构成;医院中采用的核磁共振设备基本采用的都是超导磁体;发现上帝粒子的大型强子对撞机是由1232个二极磁体和392个四极磁体构成,这些都是由NbTi线绕制的超导磁体;甚至尿不湿的发明都跟粒子对撞机脱不了干系(现代尿不湿,还有粒子加速器的功劳!);我国参与的国际热核聚变实验堆计划将发展清洁无污染的核聚变能源,采用的最为关键部件即是大型的超导磁体。

威尼斯国际平台app 25

大型强子对撞机

(图片来源:

威尼斯国际平台app 26

国际热核聚变实验堆

(图片来源:

总体来说,超导磁体具有耗能低、体积小、重量轻、磁场质量好等优点使其被广泛应用于高场磁体、高能粒子加速器、医学上的核磁共振成像、生物和材料研究的核磁共振谱仪和质谱仪、以及磁约束核聚变等装置中。超导磁体看似“高大上”,远离大家的生活,其实它早已影响我们日常生活的方方面面。

未来,随着超导磁体的发展,我们期待能够用上永不枯竭的聚变能源,坐在时速1000公里的磁悬浮列车上……

作者单位:中国科学院强磁场科学中心

转载授权、合作、投稿事宜请联系cas@cnic.cn

科学大院是中科院官方科普微平台,由中科院科学传播局主办、中国科普博览团队运营,致力于最新科研成果的深度解读、社会热点事件的科学发声。

本文由威尼斯国际发布于科学,转载请注明出处:科学家创造迄今最大磁场,超级神冈探测器等

关键词:

最火资讯